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EXPERIMENTAL STUDY OF DYNAMICS OF GAS BUBBLES IN A TURBULENT JET 

A. I. Mart'yanov UDC 534~833.53 

In investigating the scattering of ultrasound by turbulent jets for noncontacting flow 
diagnostics, the effect of gas bubbles of various sizes must be taken into account. The 
problem of the evolution of the bubble distribution function in the jet is also of certain 
interest. 

A number of experimental papers have appeared on the study of the free-gas content in 
still water and in a disturbed volume of liquid. Gavrilov [I] describes a method for deter- 
mining the free-gas content based on a measurement of the attenuation of ultrasound, 

In this method the gas content is estimated from the expression 

K t = 6 ,3"  l 0  5 n (Ro):R~, 

where K l is the attenuation factor in dB/m; n(Ro) is the number of bubbles per cm 3 of liquid; 
and Ro is the radius of a bubble. 

We find the gas-bubble distribution function by using the tabulated values [2] of the 
absorption cross section o for bubbles of various sizes. Since the composition of the gas in 
the bubbles is uncertain, the actual and calculated values of the absorption cross section 
differ somewhat. Nevertheless, a knowledge of the frequency dependence of ~ permits a study 
of the variation of the bubble-distribution function along the jet. 

The intensity of an ultrasound wave propagating in a medium containing bubbles varies 
according to the law ~3] 

W (z) = Woc -~R~, (i) 

where W(x) is the wave intensity after penetrating a distance x into the layer with bubbles; 
Wo is the wave intensity at the entrance to the layer; n R is the number density of bubbles of 
radius R; and o R is the absorption cross section of a bubble of radius R. 

It is well known [3] that the absorption of sound energy by a gas bubble is maximum at 
a frequency equal to the resonance frequency of the bubble [4] 
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w h e r e  p i s  t h e  h y d r o s t a t i c  p r e s s u r e  i n  t h e  l i q u i d ;  0 i s  t h e  d e n s i t y  o f  t h e  l i q u i d ;  and y i s  
the adiabatic exponent. 

Calculations presented in [2] are a good illustration of the resonance properties of 
bubbles and permit a determination of the bubble-size distribution function from measurements 
of the attenuation of sound energy at various frequencies. 

We performed measurements in a hydroacoustic basin. A jet of water at the outlet from 
a four-jet cylindrical nozzle with cylinders i0 mm in diameter located symmetrically around 
a circle 20 mm in diameter had a velocity of -25 m/set. The nozzle was submerged to a depth 

of 50 cm; the jet was emitted in the horizontal direction. The distance between the ultra- 
sonic redeiver and radiator was fixed at 15 cm. The measuring tank was calibrated at several 
working frequencies between 300 and 2000 kHz in still water. A pseudoceramic plastic was 
used as a detector and the radiator was a sphere of TsTS-19. The use of a sphere almost com- 
pletely eliminates the formation of standing waves in the acoustic tank. After calibration 
the jet was turned on and the amplitude of the wave which had passed through the jet was 
measured at the same frequencies at which the calibrations had been performed. The number 
density of bubbles was calculated from Eq. (i) 

2 Ig K (2) 
7z (R) = ~ lg e ' 

where n(R) is the number density of bubbles in the range of radii R • (I/2)AR, K is the ratio 
of the amplitude of the signal in the undisturbed jet to the amplitude of the signal at a 
distance x into the turbulent jet. 

Taking account of the fact that the quality factor Q of a bubble as a resonance system 
depends on the frequency [5], the graph of the resonance frequency of a bubble as a function 
of its radius (values of the attenuation factor calculated in [5]) was used to find the range 
AR of bubble sizes corresponding to the extinction of the ultrasound wave of the given fre- 
quency. 

The values of the number density of bubbles of a given size calculated by Eq. (2) were 
normalized to the range AR = 0.3,10 -4 cm, which was the smallest of the sizes found. 

The dependence of the Q of a bubble on its size imposes an upper limit on the frequencies 
or a lower limit on the sizes of bubbles which can be measured by this method. Measurements 
at frequencies above 2 MHz, which corresponds to bubble radii smaller than 2-10 -~ cm, cannot 
be considered correct since the quenching of sound of a higher frequency is strongly affected 
by larger bubbles as well as by those of resonance dimensions. The lower frequency limit, or 
maximum size of measurable nuclei, is determined by the reverberation properties of the system. 
It is 300 kHz, which corresponds to bubble radii ~1.3.10 -3 cm. 

The bubble-size distribution function was taken at various positions from 0 to 137 cm 
from the nozzle outlet. The geometry of the jet was taken into account. The width of the 
jet was taken as the distance between the boundaries of a dense filler of visible air bubbles 
artificially introduced into the jet. The measurements confirmed that the effective boundar- 
ies of the jet are rectilinear [6]. Assuming that the bubbles were more or less uniformly 
distributed over the cross section of the jet, which is probably not a very crude approxima- 
tion for a highly turbulent jet, the total number of bubbles in a cross section of the jet 
0.51 mm thick was calculated. A layer of this thickness at the nozzle outlet has a volume of 
i cm 3 . 

Figure i shows the measured bubble-distribution function. The experimental points are 
denoted by small circles~ In the calculations the value of K at each point was taken as the 
average of four or five measurements performed on different days. The deviation of K from 
the mean value did not exceed 20-30%. The number of bubbles in the layer with radii R • 
(I/2)AR is plottedalong the vertical. Curves 1-5 represent the bubble-distribution functions 
at distances of 5, 17, 37, 57, and 87 cm, respectively, from the nozzle outlet. 

The total number of bubbles in a layer was estimated from the graphs, part of which are 
shown in Fig. i, Analysis of the dependence of the total number of bubbles in a layer on the 
distance of this layer from the nozzle outlet shows that under our experimental conditions 
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the total number of bubbles with radii from 1.3.10 -3 to 2.15.10 -~ cm remains practically con- 
stant within the limits of error of the measurements and calculations up to distances ~120 
cm. 

From all appearances, most of the bubbles are produced inside the nozzle and only a 
small fraction in the immediate vicinity of the edge of the nozzle. Then the bubbles begin 
to grow as a result of diffusion and coagulation processes [7, 8]. Since the number of bub- 
bles of the sizes monitored hardly changed, the diffusion process must be the most effective 
for our flow pattern. We present a further argument in favor of the diffusion process. In 
coagulation most of the free gas in bubbles of the sizes checked comes from bubbles of radii 
smaller than 2.10 -~ cm. To ensure the observed increase in the amount of free gas in bubbles 
of radius ~10 -4 cm would require ~106 bubbles in the layer. Such a number of bubbles would 
attenuate a 4-5 MHz signal much more strongly than is found experimentally. 

The author thanks L. M. Kustov for help in performing the experiment and A. N. Barkhatov 
for his interest in the work and a discussion of the results. 
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